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Abstract: Term structure is often reconstructed from cross-sectional data where observations corresponding
to a considerable proportion of maturities are missing. Usually nonparametric methods, such as various
interpolation techniques, are employed to fill in these missing observations prior to the estimation of the
model of interest. In this paper, we examine the impact of spline interpolation on the properties of

expectations theory tests.
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1. INTRODUCTION
Factors that drive the evolution of the term
structure of interest rates have attracted

considerable attention in the empirical economic
and finance literatures. Term structure is a crucial
input into pricing of interest sensitive derivatives.
The relationship between short and long interest
rates is important from the perspective of
understanding the mechanism of transmission of
monetary policy. Last, term structure is believed to
reflect the expectations of market participants
about future evolution of interest rates and
therefore could provide a wealth of information.

Default-free term structure datasets often contain a
large number of missing observations, which arise
due either to thin trading or simple non existence
of bonds with certain maturities. The problem is
particularly severe in high-frequency (daily,
weekly) datasets.

Most empirical studies rely on various cross-
sectional interpolation techniques to reconstruct
the missing observations. Cubic spline
interpolation is still arguably the most popular
method and was used by McCulloch and Kwon in
the construction of the popular dataset of monthly
US interest rates [McCulloch and Kwon, 1993].

The ability of the interpolation procedure to extract
information from the observed cross-sections has
been studied by a number of authors. Bliss [1996]
" reports that many such methods appear to leave
omitted factors in the residuals. To the best of our
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knowledge the effect of interpolation on the
properties of estimators in popular term structure
models have not been attempted. The objective of
this paper is to document some of these effects.

The structure of our simulation study is fairly
straightforward. We start by estimating an interest
rate model which is then used to simulate
observations  consistent the  expectations
hypothesis. Observations are then randomly
selected and dropped from each cross-section.
Missing observations are reconstructed using exact
cubic spline interpolation and the interpolated data
are used to compute EH statistics.

2. EXPECTATIONS HYPOTHESIS

2.1 Theory

The expectations hypothesis has a long history in
economics. It is based on an intuitively plausible
idea that the slope of the current term structure
contains information about the future evolution of
interest rates. In particular, if long term rates
diverge too far from the expectations of future
short rates the expectations theory prediction is
that investors will trade umtil rates are brought
back in line with these expectations.

Unfortunately, it is impossible to find a unique
consistent formalisation of this simple idea. Cox,
et al. [1981] noted that different formulations of
the expectations hypothesis lead to incompatible
theories.



Nevertheless, a large empirical literature
developed testing the implications of the
expectations hypothesis. Earlier papers, most
notably Campbell and Shiller [1991], generally
rejected the theory; some recent research however
finds some support for it at very short maturities
[Longstaff, 2000] and in the international data. A
recent survey of the theory; with tests and
applications can be found in Bekaert and Hodrick
[2000].

Most often ET is interpreted as a hypothesis that
forward rates of interest are unbiased predictors of
the future short rates and somewhat arbitrarily
postulated in terms of yields:

f@.n)=E,[r@+n) vn.

Here f(z,n)- denotes the n-period forward rate of
interest, E,[X]=E, [X| o-,] and r(t) is the one
period (short) yield. As an almost immediate
implication we can obtain that the yields to longer

maturity bonds are equal to the expected average
short yields over the life of the bond:

rtn)= 1, +E, (—:;Z(:r(t +i)].

In this expression r(t,n)=—[LnB(t,n)]/n is the
yield on an n-period bond and g, is the time-

invariant risk or liquidity premium on holding the
n-period bond. This premium is assumed to be
zero in the Pure ET.

In this paper we concentrate on a number of
popular ET tests.

The first two are the Fama-Bliss regression tests:

Test 1.
r(t+1,n_1)_r(t,n)=a+pww,(tﬂ)
-

Test 2.

n-1

g}:(l—%)m(ﬁi—l):
=y+ J(r(t, n)—r(t))+£2(t +n—1)

The expectations theory restricts the slope
coefficients &, § in the above regressions to unity.

Consider a VAR in levels for the yields:

m
Y =C+ Y Ay i+,

i=1

here y,'=[r(t) r(t.2)..r(t,n)] is the vector of
yields. Using the estimated VAR we can construct
“theoretical spreads” as averages of VAR
forecasts:

S'(t,n)= "i%rf(t +i)-r(t),

i=0

where r/(T) is the time t VAR forecast of one
period yield at T.

Under the expectations theory the actual spread is
the expectation of the theoretical spread

S(t,n)=E,(S'(t,n).

In addition to the regression tests Campbell and
Shiller [1991] suggested that correlations between
“theoretical spreads” (Test 3) and actual spreads as
well as the ratios of corresponding variances may
provide more meaningful tests of economic
significance of deviations from the expectations
hypothesis.

3. SIMULATIONS
31 Basic Model

Interest rate model used in this study was
estimated for maturities of 1 to 12 months on the
sub-sample from January 1965 to February 1991
of the McCulloch and Kwon dataset.

To obtain simulations consistent with the
expectations hypothesis we proceeded in two
steps.

Firstly, we reduced the dimensionality of the
cross-sections by extracting dynamic factors from
the yields. The first factor is assumed to coincide
with the shortest maturity (monthly) yield; the
remaining two factors are obtained as the principal
components of the sample variance-covariance
matrix of the spreads. In particular, the two
additional factors are the linear combinations of
the yields f(t)=w,'r(t,n) with the maximum
sample variance normalized to have the norm of
unity:

wPw > max
w

stww=1
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Factor loadings are determined by the eigenvectors
corresponding to the two largest eigenvalues of the
sample variance-covariance matrix of the

spreads 7 .
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Figure 1. Sample factor realizations.

In the cross-sectional regressions factors capture
about 98-99% of the sample variation of the
spreads with the only exception of the spread
between 2-month and ‘1-month yields where the
amount is somewhat more modest 90%. The rest
of the analysis is performed conditional on the
estimated factor realizations. Figure 1 illustrates
the dynamics of the estimated factors.

The factors are modelled as a 2nd order VAR with
GARCH(1,1) residuals. While factors are
uncorrelated by construction; we estimate the

model under the much stronger assumption that
they are uncorrelated conditionally as well as
unconditionally. The main benefit of this
parameterisation is that GARCH parameters can
then be estimated equation by equation. With
conditionally uncorrelated factors the model
becomes:

2
Y, =C+ LAy, +7,
i=1

My = 94

2 _ 2 2
o, =0+ '1-'5,_,,. +00,
The parameters of the mean equation are estimated
by OLS, the residuals are then used to estimate
GARCH parameters.’ The estimates obtained with
this two stage procedure are consistent but
inefficient [see e.g. Gourieroux, 1997]). To
conserve space we do not report parameter
estimates.’

Table 1 presents some selected diagnostics of the
scaled residuals.

Table 1. Diagnostics of the Standardized Shocks
(assymptotic p-values in paranthesis).

m m m

o o)) O3
Skewness -0.313 0.333 0.3893
Kurtosis 5.8209 4.6782 3.9968
JB 105 41.019 20.131

(0.000) (0.000) (0.000)
Serial Correlation 0.276 0.441 0.218
(5 lags) (0.926) (0.819) (0.958)
ARCH LM test 0.129 1.317 0.828
(5 lags) (0.985) (0.257) (0.531)

Our sample period includes the Volcker period
from 1979 to 1982 when the FED switched from
targeting interest rates to targeting money growth
which lead to an episode of extremely volatile
nominal rates. This period is usually
accommodated by either treating 79-82 as a
structural break in the series or by incorporating a

1 All calculations reported in this paper were
performed in Matlab 6. GARCH toolbox was used
to obtain estimates of the GARCH parameters and
the Econometrics toolbox by J. LaSage was used
to compute most VAR statistics.

2 All unreported calculations are available from the
author by request.
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Bias

(Zf‘m_ A Standard Deviations
l=1 n
Pm=0 P =10% P =30% Pn=0 Pn =10%  p, =30%
Test 1
Long
rate
2 0.34% -6.23% -8.84% 0.13 0.13 0.14
4 1.02% -2.50% -12.45% 0.22 0.21 0.21
8 5.67% 3.29% -5.99% 0.41 0.40 0.39
12 11.40% 9.47% 2.12% 0.52 0.51 0.50
Test 2
2 0.39% -1.42% -21.72% 0.06 0.07 0.08
4 0.78% 0.33% 0.49% 0.08 0.08 0.08
8 3.55% 3.10% 1.67% 0.12 0.11 0.11
12 6.65% 6.51% 5.73% 0.14 0.14 0.13
Test 2 (Second order VAR)
2 -0.78% -0.92% -1.31% 0.008 0.009 0.011
4 -2.81% -3.41% -3.95% 0.020 0.022 0.023
8 -11.17% -11.69% -11.32% 0.050 0.050 0.049
12 -16.03% -16.50% -15.74% 0.063 0.062 0.061

Table 2. Monte Carlo distributions of ET statistics.

level effect into the volatility equation. This can be
done by augmenting the GARCH equation with a
scaling factor equal to the square root of the lagged
short yield.

Simulating with the levels related volatility created
considerable problems. In particular, in our
discrete-time model it is impossible to restrict
yields from making trips into the negative territory
without additional transformations. With the levels
adjustment, volatility is not defined for negative
yields. We tried simple specifications for the
volatility effect consistent with the possibility of

negative yields, such as scaling with |r(t)°'5 , but

-the  resulting  simulations

implausible.

appear  highly

On the other hand, fitting a simple GARCH
process on the selected sub period produced
plausible specification (Table 1) and simulations
without any need for additional tweaking and was
judged sufficient for the purpose of this paper.

3.2 Missing Data and Interpolation

The last step involves bootstrapping standardized
VAR shocks, introducing missing data and re
estimating ET regressions.

Bootstrap samples were constructed by resampling
with replacement from the rows of the
standardized GARCH residuals. The simulations
were conditional on the sample estimates of VAR-
GARCH parameters, so that the estimated VAR-
GARCH equation was then used to construct
simulated short yields and factors. In order to
obtain simulations consistent with the null of the
expectations theory we use VAR forecasts to
simulate ET consistent spreads as described in
section 2.1. The same method was used by Bekaert
et al. [1997] to bootstrap small sample properties
of the ET statistics.

For each bootstrapped sample we randomly select
and drop observations from each cross section by
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generating a binomial random variable [ (t, k),
which takes values 1 and O with constant
probabilities p,and 1-p, respectively. We

report simulations for p,, setto 10% and 30%.

The process generating missing observations is
oversimplified. In reality the missing data problem
is a lot more severe for longer maturities. Also real
missing data exhibit deterministic trends as
missing data move along the yield curve towards
shorter maturities.

Observations corresponding to I(t,k)=1 are

replaced with their interpolated values. The only
difference with McCulloch and Kwon is that the
cubic spline is restricted to fit the observed
maturities exactly.

4. SIMULATION RESULTS

Simulation results are reported in the table 2. The
evidence in the table is based on 5000 simulations
of each statistics. The table details the average
sample bias of the estimates relative to the ET
value of unity for all the statistics.

All small sample distributions display nontrivial
biases. In terms of the magnitude and direction of
these biases our results are roughly consistent with
the simulations detailed in Bekaert et. al. [1997]
with the exception of the correlation test (test 3). In
our simulations, contrary to what is reported in the
above paper, the VAR correlation test seems to fair
very poorly. It is however doubtful that either of
these simulations based on miss-specified bi-
variate VARs enable us to make reliable
statements about the magnitude of small sample
distortions in VAR tests.

Regression test based on the changes in long yields
(test 1) are most sensitive to the presence of
interpolated data. The contribution of spline
interpolation to the bias disappears in tests #2 and
#3 but remains almost constant for the regression
test #1. :

Somewhat counter intuitively there appears to be
very little effect on the standard deviation of slope
estimates. In fact standard deviations appear to be
smaller for the tests using interpolated simulations,
at least for longer maturities. This suggests that
interpolating observation possibly over-smooths
the data, producing optimistic confidence intervals
for regression statistics. Quantitatively however
the effect is very small.

Figure 2 shows the effect of interpolation on the
distribution of the statistic of the test 1 regression.

The distribution was estimated using the Gaussian
kernel with the usual bandwidth selection criterion
based on the IQR of the empirical distribution. As
suggested by the standard deviations there are no
noticeable shape distortions.
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Figure 2. The distribution of the regression
coeeficient (Test 1) for S(2,t).

5. CONCLUSION

This study examined the sensitivity of a number of
expectations theory tests to cubic interpolation of
the missing observations.

The results of our simulations indicate that, even in
our highly stylised structure, a small fraction of
missing data can introduce significant biases into
simple regression and VAR tests. The biases
generally shift the distribution of the regression
tests to the left, which is consistent with the
deviations of the usual empirical estimates from
ET values.

Unlike small sample biases documented in the
literature, these biases are unlikely to disappear as
the sample gets larger. It seems reasonable to
hypothesise that these biases can be quite
substantial in studies employing interpolation with
high frequency observations.
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